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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHN ICAL MEMORANDUM- ¥O, 1092

ON LAMINAR AND TURBULENT FRICTION?

By Th. von Karman

The theoretical treatment of surface friction of liquids
or gases A&t 2 80114 wall encounters serious diffileulties as
soon as the processes are no longer defined by the viscoslty
of the fluid alone, but also involve the forces of inertia
with the probable exception of the flow phenomena in capil-—
laries and the probleme of lubricant friction — as 1s the
case in nearly all practicel problems, All the same, two
substantlal advances have been achieved in this domain with—
in the laet decades; namely, by Prandtl's "boupndary layer
theory"™ and Blasius! confirmatlon of the previously sus—
pected nature of the friction loss 1in smooth pipes.

Unfortunatelvy, the results of Prandtl'’s theory have
remained confined to a comparatively narrow range, first
for the more obvious reason, that the paper work involved
for specific cases 1s enormous, but then also because its
physical range of validity is, like the theory of pure
friction flow in pipes, restricted to narrow limits. Just
as the pure friction flow, the so—celled laminar flow in
pipes, 18 replaced by a "turbulent flow" at higher velocities,
s0 the laminar boundary layer 1s replaced by a "turbulent"
boundary layver.

The present report deales, first with the theory of the
laminar friction flow, where the basic concepts of Prandtl's
boundary layer theory are represented from mathematical and
physlcal points of view, and a method 1s 1indicated dy means
of which even more complicated cases can be treated with
gsinple mathematical means, at least approximately, An
attempt is slso made to secure a basis for the computation
of the turbulent friction by meane of formulas through which

11Gber laminare und turbulent Reibung." 2Z,f,a.M.M,,
Vol. 1, ¥o. 4, Aug. 1921, pp. 233-262,
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the empirical lawe of the turbulent pipe resistance can bde
applied to other problems oq_f;iction drag.

1
MATHEMATICAL IMPORT OF THE BOUNDARY LAYER THEORY

The problem is restricted to two-dimensional flows; the
axis y # O 1is chosen as fixed boundary to which the fluid
adheres.

The differential equationg of two—dimensional flow with
friction can, by introduction of the stream funection ¥ by
means of the formula

_ oy
u--a—;.v ax

(u 2and v velocity components in x— and y—direction)
and elimination of the pressure, be expressed by the single
equation

day Oy 3ay 9V day
— 4+ — —— = — —— ="TAAY (1)

. 3® aa
where 4 denotes the operation & = — + 3, V = 4
ox” oy o]

kinematic viscosity (p = viscosity, p = density of fluid).
The boundary layer theory refers to flow phenomena for which
at same dlstance from the wall the friction shell exert no
perceptible effect on the velocity fileld, so that for great
values 0f y +the stream functlion changes into an assumedly
known potential function VY, (x, y, t). At the wall itself

both velocity components u and v are to disappear. In
order to meet both conditions, first put

q,=\|,o..y.(%!£§.>y=e + J?w—i%-. x, t) (2)

It is clear that for emall values of y the first two
terms cancel out, leaving only the stream function q/°W1
(the stream function of the boundary layer flow). This 1is

1a list of references on boundnry layer theory 1s given
in reference 1.



NACA TH No. 1092 3

o 9
then 80 defined that at the wall }gl = 192 = 0., On the
e . y _ ox
other hand, when VvV represents a small qﬁahtfty,'-z- be—
Vo

comes very great for all values of y differing appreciabdly

from zero; hence, to comply with the first condition — tran—

eltion to potential flog - 1t gs sufficlient to determine Wl.
v Vo

in such a way that ./v 1:(7 ) for n = L s,

oy oy y=0 A

Thue it ie apparent that within the boundary layer (n =
finite) the first two terms, outside the boundary layer (n
very great) the last two terms annul each other. (Strictly
teken, the u component of the boundary layer becomes the

u — velocity of the potential flow; for the Vv component
the boundary layer flow gives a quantity of the order of megnitude

MG- which 1e not contained in tke potentilal flow,)

Introduce formula (2) in eauation (1), arrange in powers

of /v and retain only “the highest terms with lL. Then
the introduction of n = A as variable instemsd of vy, the
expansion of %?3 and of EES according to the formulas
¥ X
N, A, 2%y,
GO IR L S
oy dy /v = O oy /y = 0
Vg 2%V,
- G5,
ox 3x0y’y = O
oV,
and laetly, considering that a4y, = O, —_— = 0,
) bx y.=0
afforde
1[ 2%, Ay, 3%y, dy; 3%y, 3%y,
3+ - =z 3 =0 (3)
JU Dtdn on 9x3dn? 9dx dn an

and, after one integration:

3%y, , A %W, ¥, 3%y, 2%y, ¢ (x. +)
—~ — = X
dtdn 3n  dxAn dx 3n= an3
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or with -E!’—l--s-u. WA E-\I-Ii = — vy, the variable y = nﬁ belng
on ox .

introduced again,

ou du ou 3%
— —_— — — 4
STttt T T v 353 f(x, t) (4)

in agreement with the Prandtl equations.

The function f (z, t) 1s determined by the condition for

oy
y = 0. Since u must change to u, =(§_2 s there 1s
obtained Y9 =0
du du
—2 4 u,—2 = f (x, t) (4e)
ot x

for n = o,

The frictionless potential flow follows Bernoulli's
equation differentiated along the boundary as streamline
(p, = pressure along the wall)

a'\lo Buo l bpo
5t 0 3% o ox (4v)
hence
du du du 1 dp 2%
— el —_—E e = i D - 4
3t 23z P 3y > 3x 3y 8 (4e)

The significance of (4) and (4b) obviously 1s ‘that the
assumedly known pressure distridution p, along the wall

which arises from the potential flow 1s to a certaln extent
recarded as impressed field (of force) for the boundary layer
flow; the preesure differences perpendicular to_the wall wilth-—
in the boundary layer being disregarded. It 1s this very
essential hypothesis in Prandtl's theory that leads to the
reduction of the number of equations and the arrangement of
the entire problem.
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THE MOMENTUM THEOREM OF THE BOUNDARY-LAYER THEORY

To dring out the physical sense of the boundary layer
theory the evidence contained in the foregoing equations is
formulated as follows:

(2) A boundary layer thicknees 8 (&s a function of x)

1s to exist such that for y 2 8 there no perceptible de—
viation occurs in the flow pattern relative to the potential
flow; especianlly the x—-component u of the velocity can be
put egual to the wall velocity of the potential flow u,
for y =8 (x).

(b) Within the boundary layer 1itself the pressure is
only dependent on x and equal to the pressure that corre—
sponds to the potential flow along the wall,

By virtue of the two assumptions (a) and (b) the momen—
tum theorem in the x direction can be applied to a fluid
volume bounded by the wall, a short plece of the line
y = 8 (x) and two croes sections perpendicular to the wall
at ¥ and x + dx (fig. 1.) The incresse of momentum is
equated to the resultant of the outside forces, which involve
the pressure difference, and the friction R at the wall as
outslde forces. Since for y =8 the flow changes into
frictionless potential flow, the friction at the traneitional
area between the boundary layer and the outer fleld can be
ignored.

Hence
3 8 8 8
d 2 . Ap
— —— -— — = - -—-——-R
atu/npudy + 5. pu dy — ug axijppudy 8 ™ (s)
o o o
é
o

3;{/ pudy 1s the time rate of change of the momentum con-~
8
°

[}
tained in the considered volume; -;;‘Zpuady is the excess

of momentum leaving the front surface over the amount of

momentum entering at the rear; g& pudy 1s the inflow
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volume per unit length of the side area y = 8 (x), 8o that

T

u, gL pudy indicates the momentum entrained with this vol-—
x

ume of fluiad,
In laminar flow the frictional force R referred to

unit surfaece 18 R = T5 = 1 (%5) (T = shearing stress
yy=0

in the fluid.) Later on, it is shown that equation (5) 1is
practical also for turbulent flow conditioms, if u and p
are regarded as the average values of the velocity wilth
respect to time and To 1s expressed by a corresponding
enmpirical formula.

Equation (5) ecan, of course, be derived nlso by in-
tegration with respect to ¥ from equation (4) with due
regard to (4a) and (4v). It obviously yields, on the basis
of plausible asspumptions for the velocity profile u (y)
in the boundary layer (0 < y < &), simply a differential
equation for &, that 1s, for the boundary laver thickness
as a function of x and t. Limited to statlonary processes
it affords an ordinary differential ecquation of the firet
order for 8 =as a function of =x, 80 that the development
of the boundary layver can be followed by comparatively
simple calculations. The subseocuent report by K. Pohlhausen
(reference 1) contains the calculations for a number of
practically important cases, so that this method need not
be gone into further. His calculations show that 1n all
cases computed by Prandtl'es partial differential equations
the approximate method ensures results commensurate for all
practical purposes. Ipn this manner a further development
of the theory 1le made possible even where the solution of
the partial differential equations 1s extremely tedious, 1f
not impoesible.

LAMINAR AND TURBULENT BOUNDARY LAYER

The simplest and practically most important case that
the boundary layer theory deals with ls the friectional re—
slstance of a plate towed in a fluld at reat parallel to
ites own plane. Taking the case of two—dimensional motion
and referring the motion to the assumedly static plate, the
problem ls as follows: The parallel flow with the uniform
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veloclty U 1e given as a potentlal motion, the frictlional
boundary is to start in the origin of the coordinates x =

y =0 and for x =2 O be given by the axis y = 0. The
boundary layer thickness and the wall frictlon i1 to Dbe
computed as a function of x. This problem has already been
solved by Blasius (reference 2); he found that the boundary

laver thickness increases with ,/ x . Computing the friction
drag for a plete of lensth 1 and width 1 yielde the fric-
tional force (for friction on both sides)

¥ = 1.327 Jupiv® (8)

or, if put, as usual,

3
U
Wo=cgt F— _ (7)
2g
-
where the resistance 1s referred to the velocity head E—.
3

the surfece I and the specific welght of the fluld Y = pg,!

Ua
W= 1.327 2 oy - (8)
Ul 28

The coefficlent of the frictional drag c is a functinn
of the Reynolds number, or "reduced velocity"™ "R, in ease the
nondimensional guantity: velocity X plate length divided by
coefficient of kinematic viecosity 1g introduced as such, so
that

1
e, = 1.327 — (8a)
R

Blasiue indicated, in a later report (reference 3) based
uvon measurements, that formulee (8) and (8a) are no longer
valid for large Reynolds numbers, that rather a sudden change
occurs in the nature of the reslstance and presumably in the
state of flow, similar to that oeccurring in pipe flow at the
ceritical 1imit. On the other side of the sudden change the
resistance increases at more than the 3/2 power of the velocity;
hence the resistance coefficient in equation (7) decreases

slowver than ——.
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. ._Next, "1t is assumed that the laminar boundary layer, for
which the Prandtl—Blasius theory glves the afore—-mentioned
resulte, is replaced by a “turbulent boundary layer,® in
which — as for the turbulent flow in pipes — the velocity is
subjected to continuous fluctuations in magnitude and direc—
tion. The first conseauence of the fluctuatlons — when
plotting the streamlines of the average flow — 1le that the
shearing streses is not caused by the sliding of the adjacent
fluid portions alonej} the portion of the shearing stress
corresponding to the friction becomes small relative to the
momentum transport owing to the irregular convectlon of the
supplementary velocities. Up to now, it has not succeeded
to explore in some way the nature of this momentum convectlon —
apparently obeying statistical laws — and to make the fluec—
tuation phenomena accompanyling the turbulent flow amenable
to a theoretical study. In thils respect the present article
contributes nothing to the solution of the puszle, The task
undertaken here merely involves the introduction of plausibdle
assumptions for the distribution of the average values of the
velocity within the boundary layer, which are based on the
enpirical law of turdulent motion in pipes and the applica—
tion of the previously derived momentum equation to the
equilibrium of the boundary layer. It results in relations
of the turbulent friction at a2 towed plate which are in very
€o0od sgreement with experience.

TEE TURBULENT FLOW IN SMOOTH PIPES

The laws of flow resietance in plpes have been the sub-—

Ject of an unusuaslly large number of experiments. But the
enpirical materizl has not improved much up to within recent
date because the different degrees of wall roughness had been
freocuently 1gnored and the tests were not referred to the
hysically correct parameter, that is, tke Reynolds number,

The only resistance formula,se far, which allowe for the
relative roughness and the Reynolds numdber is that by B. von
Mises (reference 4.) In many instances no consideration was
g£iven to the faet that the constant veloeity profile in the
plpe is formed only after a fairly long "convection path."
Blagius merits the credit of having found an empirieal
formula by analyzing the material and comparing the best ex—
periments for smooth plpes which very accurately reproduces
the nature of the flow resistance over a wide range. Accord—
ing to 1t the pressure drop for a circular pipe 1ls referred

2

to the velocity head of the average velocity E—
€
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LI
hed-22,2=0.318 /> (8)
4 28 . va .

where | 1s pipe length, and 4 pipe diameter.

By thies formula, which represents the experiments ex—
tremely well over a wide velocity range the pressure drop 1is
proportional to the 7/4 power of the average velocity as
agalnst the previously held conception that the resistance
law above the critical velocity would approach the square
law frirly soon, BR. von Mises incidentally conjectured that
contemporarily with increasing velocity, the velocity dis-—
tribution over the section becomes consisterntly more uniform
8o that the measured parabolic velocity profiles merely
form a transitional phenomenon and that the profile variles
continuously with increasing velocity (reference 4,) 1In
the technical literature a paradolic distribution independ-
ent of the velocity is for the most part tacitly mssumed.
The writer concurs with Von Mises to the extent of amssuming
e dlstribution varying with the Beynolds number but with the
difference of sessuming a well defined distridbution function
as asymptotic form rather than the uniform dlstridbution,
which the velocity distridbution approaches at larese Reynolds
numbters and on perfectly smooth wallas. Hence, the assump—
tion that 1in the turbulent as in the laminar zone, at least,
for large Reynolds numbers for which the resistance law (9)
holds true, & similar remaining velocity distridbution over
the cross section exists, 8o that for increasing throughflow
volume all velocitiea increase in proportion. Prandtl railsed
the ocuestion whether conclusions could be drawn from the em—
pirical law (9) regarding this velocity distribution. EHe
found on the basis of a dimensional analysis that, under
certain plausible essumptions, the resistance law definitely
defines the distridbution of the velocity in the direct
vicinity of the wall. The suggestion for the following anal~
yels goes back to a conversaticn with Prandtl 4in the fall
of 1920. The publication is with his consent, though the
process of derivation 1s somewhat different from his.

Consider a pipe of circular cross section, If the
velocity in the pipe axis (r = 0) 4s indicated by ug, 4.

the assumption of a velocity profile independent of the
throughflow volume and increasing similarly impliee that the

ratio u'u is a definite function of E only (r = distance
max .

from pipe axis, a = pipe radius).
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Hence, the firet assumption reads: the velocity at dis—
tance r from the pipe axis can be put

U = Upgy cp(%) (10)

P (;) being independent of wup,y. On doudbling the velocity
in the center all veloclties are doubled.

The second assumption states: the velocity distribution
in vicinity of the wall, that 1is, near r = a, is to depend,
aglde from the physical constants u and p, only on the
distance from the wall 1 = a — rS and further, on the

shearing stress (frictional force To transferred to the
wall. Hence, for small values of 7
us=1*(u, p, T, M) (11)

Specifically, the quantity wu 1s to be independent of
the pipe dimenslone, that 18, of a, for small values of
n. This essumption 1s based upon the plausidble concept
thet the velocity distribution next to the wall is inde—
pendent of the other boundarles of the flow, so that =a
definite relation exists between the friction on a wall ele-
ment and the immedimtely mdjacent velocity distridbution.
Visualize equation (11) developed by increasing powers of n;
the firet term of the development to read

u = f;(u, D, To)nx l (11a)

x to be defined later.

The third assumption contains the empirical resistance
law: on doubling the velocity the pressure drop and the
shearing strese at the wall T, 1s to be increased as
1:27/4,

The dimensional eouality of the left- and right side
of (11a) can obviously be maintained only when f contains
the quantities pn, p, To also only in powers; for, on

/T v
bearing in mind that = and — have the dlmensions of
P n
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velocltles, it is readilly apparent that the only possible
dimensionally correct comdbination is
) (12)

cen()

wvhere B is a nondimensionel constant.

1

On the other hand, sipce u 1lacreases according to (10)
in proportion to the throughflow volume; whereas, Tg ac—

cording to the resistance law increases wilth the 7/4 power
of the throughflow volume, thse relation

] + x
2

=4/7, x=1]7 (13)

must apply.

The first term of a development of the veloclity is thus
obtalred as & function of the wall distance

a = 3( °)4/7 ( >1/7 (17a)

or, with u (n) denoting the velocity distribution in prox—
imlty of the wall, the shearing stress

7/4

1/4
pv lim (u

To = —-——) (12v)
= 0 n1/4.

1
Be/7

B 18 a univergsal constant valid for smooth walls the
megnitude of which 1s obviously contingent upon the statisti-
cal law of the turbulent fluetuatlion ecuilidrium.

It 1s somewhat surprielng at first to find the differ-—
ential guotient at the wall to be infinitely great. Since
no momentum convection can occur on a smooth wall because
both velocltv components disappear, the shearing force must

)
be equal to the frilctional force un SE. This expression

n
should be infinite according to equation (12a). The matter
is explained, however, by the fact that the equations (12)
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and (12a) must be regarded as an asymptotic expresslon for
th'e ' vélocity distridbution at"infinitely large Reynolds num—
bers Just as the power law for the flow resistance represents
an asymptotic law for absolutely smooth walls and for very
large Reynolds numbers. The true velocity distribution 1is
obteined by drawing a tangent with finite slope, say, to

the velocity curve, so that T = pn %ﬁ. (Compare, for ex—

ample, the interesting measurements in reference 5.) It ig
readily apparent that the point of contact of this tangent

is shifted to the point m = 0 with increasing Reynolds
number. But it appears that equation (12) itself representes
the velocity distribution with sufficient accuracy for moder—
ate Reynolds numbers.

The best experiments on the velocity distribution in a
circular pipe were undoubtedly those made by T. E. Stanton
(reference 6), first, because he originated the use of very
fine pitot tubes in velocity memasurements, and second, he
employed a very long straight entrance sectlion ahead of the
test section, thus ensuring that the measurements fell in
the zone where the veloclty profile no longer varied per—
ceptibly. Figure 2 shows Stanton's velocity values (ratio
of local velocity to pipe axis velocity) against the wall
distance, both on a logarithmic scale. It 1is seen that —
apart from the first test point, 0.25 millimeter from the
wall, 80 that the indication of the pitot tube of 0.33 milli-
meter in dlameter no longer seems rellable — that the test
points lie very accurately on a straight line of 1/7 alope.1

For the further applications quantity B in (12a) and
(12b), which according to the assumptions for smooth sur—
faces signifies a universal constant of the turbulent flow
regime, muet be determined next. For this purpose it is
really necessary to know the total veloclty digstridbution from
the wall vicinity to the center of the pipe, whereas the for—
nulas (12a) end (12b) are valid, for the present, only in wall
proximity. The chosen method of celculation included the use
of several appropriate interpolation formulas which satis—
factorily reproduce the velocity distridbution, as measured
by varlous experimenters, and change to eguation (12a) at the
wall.

11t is to be noted that Christen proposed a veloclty
distribution formula according to which the velocity is pro—
portional to the 1/8 rather than 1/7 power of the distance
from the wall (reference 7). A detailed presentation of the
various distribution formulas is found in Forchheimer's work
(reference 8) as well as in Gumbel's report (reference 9).
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(a) An extreme case occurs when the formulas which in—
dicate the velocity is proportional to the 1/7 power of the
distance from the wall are continued to the pipe center.
Therefore

i v = pax (2TE) Y = wpay (1 -2 ) (23)

or for wall proximity

TO 4 /7 n 1/7 n"/"
u = 3<f;') <?;> “max':T7?

Considering the relation

dp 2 n
E; wa = 3naT, and T, = Y 57&

existing between the pressure drop and the wall stresa, the
calculation of the flow resistance by Blasius's formula gives
§ g 4/7
B ( Av 1l _ Uqu
'é' v1/7 T p1/7

The ratio of average velocity v, occurring in Blasiun's
formula, to maximum velocity 1s, by (13),:

= 0,816
Unax
p\1/4
Thus with A = 0,316 (-E> the value for the constant
B is v

/7

1/7( 8 )4

B —— o- - .5'7
=2 0.318 816 8

(b) A better approximation to the measurements is
afforded in the case where the veloclty profile at the pipe
center is "rounded off" a little. This is best obtained by
the formula
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T (O P (150)

where the exponent n can be chosen arbitrarily; n =1
obviously leads back to (183). Figure 3 contains a number
of measurements of different experimenters along with the
three curves for » =1, 1.25, and 2, The teat points lie
almost without exception between curves B = 1 and n = 2,
Repeating the above calculating process with n = 1.256 and
n =2, the constant B amounts to

B=8.,62 with n = 1.25

B =8.82 with n = 2.00

average veloclty
The values of the ratilo are 0.838
maximum velocity
for n=1.28 and 0.875 for n = 2. The most reliable
measurements give 0.84.! From this it is concluded that (13)
with n = 1.25 to 2 rTepresents the conditions fairly accu—
rately, 8o that hereinafter B = 8.7 18 generally used.

Thus ecuation (12a) must be written

-0 (D (R)” (140

If the shearing strese T, 1a expressed as functlon of
the velocity, equation (12b) reads

With the values of B obtained on the basis of the
three interpolation formulas, the eauation would read

lale0 worthy of mention are the measurements by G. J.
Williams (reference 10) and Gumbel (reference 9), where
the proportionallty factor decreases a little with lncreas—
ing Reynolds numbers and then approaches the limiting value
0.811. This would favor the simple interpolation formula
under (a). But substantially higher valuee (up to 0.87) also
occur, where the effect of entrsnce length and roughness have
not yet been fully explained.
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1/4
T = 0,0225 p lim {u’ (l } (14ab)
n =0 un

as the general expression for the wall friction in case the
velocity distribution u (n) 1s known in the vicinity of

the wall. The constant in equation (14b) amounts to 0.0P33
for the velocity distribution in the pipe by (14), as against
0.0231 and 0.022]1 with 7 = 1.26 and n = 2, by (14a).

APPLICATION TO HEAT TRANSFER

FTor comparing these formulas with the representations
expressing the turbulent friction by an apparent increase
in friction coefficient (reference 11) the shearing streess
transmitted in a layer distant n from the wall is

T = gln, u, p, u) ;5 (up) (15)

If u as a functlon of n and the pressure gradient
in the pipe are known, the function g can bde explicitly
calculated, Near the wall T  must become T, .

du

Coneidering (14a) and especially the relation: 7 n = -
u, Yyilelds for g: '
To\*/? 1/7 e/7
g (n, p, p) = 0.805 9(3-> » n
r
and putting T = Ty "y ag follows from the condition of
equilibrium for the circuler pipe, gives
To\*"? 1/7 _&8/7
g (n, u, p) = 0.805 p(—‘;o-) v Y (15a)

Y Dbeing solely a function of 7 which becomes n for small
n. The relation (15a) ies applicable to any cross sectlion if

it 18 assumed that the ratlo of shearing stresses i% is

lndependent of the velocity and is only a function of the
location.
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_ Quantity g 1e a kind of "turbulent friction coeffi-
cient" or better expressed a "turdbulence factor."

The portion of true friction at larger Reynolds numbers,
up to an extremely thin layer at the wall, is vanishingly
small, hence the shearing stress is to be regarded almost
exclusively as an average value of the momentum convection.
This i1dentification is of interest because 1t makes it
possible to develop further the analogy between frictional
reslstance and heat transfer 1in turbulent flow, discovered
by Reynolds (reference 12) and Prandtl (reference 13),
Asguming that the momentum transport and the heat transfer
is accomplished by the same mechanisgm of the irregular molar
fluctuating motion, evidently results in two analogous formu-—
las for the shearing force transmitted perpendicular to the
flow by "turbulent momentum conduction" per unit of surface
and for the heat volume transferred by "turbulent heat con-
duection:"

To\3/7 1/7 8/7
r = 0.805 (Tf\\ v ¢2/7 dlen)
rd

dy
(158)
T /7 a )
a = 0.805 <—2> p1/7 yo/7 &lcod)
o dy
where ¢ = specific heat, 0 = temperature, hence cO = heat

content per unit maes. Formula (15a) may be continued up to
the wall with good approximetion if the same proportionality,
assumed for the mechanism of the "turbulent momentum and heat
transfer," exists for the transfer of molecular momentum and
heat, that is, for the laminar internal friction and for the
true heat conduction. As previously pointed out by Prandtl,
thies is evidenced by the fact that for the respective fluid,

the relation %? = 1] existe between heat conduction A,
friction coefficlent u, and specific heat c¢. This condition is

approximately complied with, in gases. If %% differs very

much from unity, as, for example, for water, the formula may
be extended only to the boundary of the laminar layer next
to the wall; while the effect of this layer —~ as will he
explained elsewhere — can be expressed by a limiting con-
dition.




P et

KACA TM No. 1092 17

. The formula (-15a) enables the heat tranafer to be com—
puted in all cases, where the "velocity field" of the turhu—
lent flow is applicable to the average values in time, and
hence g 18 known. With this formula, H, Latsko (reference
14) worked out & number of technically important cases of
heat transfer to turdulent flows. It succeeded, in particu—
lar, in showing, that it 1s incorrect to speak of a "heat
transfer factor," as is customary in engineering, that the
heat transfer 1s rather conditional upon the total arrange—
ment. It also succaeeded in explaining the effect of the
individunl factors and so to organize the occasionrally con—
tradictory experimental material, In this reapect the calcu-
lating possibilities of heat transfer processes appear sub—
stant ially extended beyond the Prandtl annlogy conclusions,
since for the latter m complete asreement in velocity and
temperature field had to be assumed, while the formuls of the
present report makes the differences between both aAlso amena-—
ble to calculation.

TURBULENT BOUNDARY LAYER ON THE FLAT PLATE

The subsecuent calculations are based on the previously
derived eguations (14a) and (14b) according to which the
velocity distribution as a function of the wall distance is

a/7 1/7

w = 8.7 (lp‘l> (E) (14a)

if 7To, the shearing stress transferred to the wall is
€lven, while the shearing stress T, is

2 ") 1/4 .
To = 0.0226 pu ('ﬁ) (14%)

u(n) being the velocity distribution in the neighborhood
of the wall. To apply these relations to the "turbulent
boundary layer" requires a corresponding formula for the .
veloclty dlstribution. With § = boundary layer thickness,

= velocity in undisturbed flow, and y = distance from the
wall, the elementary formula reads

u=U(-§—>ll? (16)



WACA TM No., 1092 18

Bquating (16) to (14a) obviously gives

a/7 )

8. 7( ) 1(7 61/'7

that is, the shearing stress

2 ) 1/4
To = 0.0235 pU (E'E> (17)

Equation (17) yields the formula that must be used in
the momentum equation of the boundary layer as the frictional
force in order to obtain a theory of the turbulent boundary
layer whiceh ie to replace the Prandtl-Blasius theory for
the laminar boundary layer.

Placing, in fact, equation (17) in eguation (5) gives
)

d 1/4
d pu dy - U -—w/Ppudy = 0.0225 U (—;>
x

8

8
Determination of the integrals g/nudy and U/nuady by

[¢]

means of (1€) gives the differential eguetion of the boundary
layer thickness

7 da v 1/4
— — = 0,022 ——
72 dx 0.0225 (Ua)

-~

The solution of this egquation reads

1/5

8 -=(9—7(?-)Ms (0.0225)"" ( ) (18)

or, for the length 1

o v 1 v 1/8
8, = 0.3 (ET (1ea)
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The 1aminar boundary luyer groweg proportional to  x,
4/5

the turbulent layor proportional to x » according to eaun-

tion (18).

Now the frictional resistance of a plate of length 1
can be calculated, eithsr by integration of the frictional
forces along the plate ar by applying the momentum theorem
to the end section for X = }. The resistance (both sides)

follows as

1/8

. 7 8 2 /¥
¥ = 5= pU 8} = 0.036 pU 1(ﬂ) (19)

Referring the resistance through the formula

Ua
By -=—
W= cgly g

to the velocity head, gives the resistance coefficient cy

1

Ro.a

= 0.072 (19a)

Ce

Uil 2
the Reynolds number R Dbeing put at R = peatl

Pigure 4 containe the test data by Gibbons and Wieselsberger
(reference 15) on com aratively smooth plates, the line for
ce according to (192 the Reynolds number and the resist—

ance coefficient are given on 2 logarithmic scale, The agree-
ment is exceptionally good. Gebers (reference 16) obttined

& slightly higher exponent. It 1e suspected that towing of
very long platee is accompanied by inevitable vibrations

which permit the resistance to increase rapidly.

laccording to & communication by letter, Prandtl pos—
sessed formula (19a) before the writer did. He indicates
(cf. Ergebnisse, vol, I) a gimilar formula with a supple—
mentary term which allows for the possible existence of
laminar flow at the front edge of a suitably sharp plate.
After determination of the numerical factors from older tests

by Gebers, he gives the formula cg = 0,073 R;&a - 1?30,
where the numerical factor in the second term generally de—
pends upon the degree of sharpening, and should be practically

vanishingly small for a rounded—off leading edges.
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An equally good confirmation is afforded by the veloecity
measurements 1n the wvieinity of a towed board. Thus the
points in figure 5 represent the measured velocity distri-—
bution perpendicular tc a board towed in water as s function
of the wall distance and apecifically in s section 8.5 meters
behind the front edge (referencel?). The solid line gives
the velocity distribution according to equation (16), the
boundary layer thicknese was computed by equation (18).

A comparison of the test data with the curve according to
equation (16) discloses, above all, thet it 1s in no way
necessary to assume ” velocity Jump at the wall, s8 com-
monly reported in the technical literature, The prssent
formulas rather represent the rapid decrease in velocity
next to the wall by the varistion of the power curve with
the exponent 1/7 correctly and unrestrictedly.

LAMINAR FLOVWV OFN A ROTATING DISK

As a further illustrative example of applying ths meth—
ods obtained for the calculation of laminar and turdulent
frictional resistences, the case of a uniformly rotating
disk is to be anslyzed. The laminar state of flow caused
by a rotating flat diek i1s of speciel interest for the rea-
son that 1t represents one of the rare cases in which the
differential equatione of the viscous fluids can bde lnte—
gratcd without ommissions. It offere an immediste check
on the accuracy with which Prandtl'se boundary layer equs—
tiong yleld an approximation.

The problem 1s posed as follows:

The half space x > 0 shall be filled with liguid.
The boundary plane x = 0 rotates about the x—aris.with
tbe uniform rotational speed w, ¥What is the state of
motion in the half space x > 0 with coneideration to the
fluid friction?

Intrcducing cylindrical coocrdinates r,-9, x and de—-
neting with en, ¢y, ¢, the veloclity compnonents in radisel,

tangentirl and axial direction, and witk p the hydro—-
static pressure, the differential equation of the flow in
eylindrical coordinntes — when, as follows from reasons of
symmetry, all veloclities are independent of ¢ — read:
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2 2 2
o 2or . 2 oyt 13 2;+3_(£:)+9_:;}
LTdr. X3y - x p or dr® dr “r dx®
deg deg letep Bact ) ct) aac£1 (20)
— +ec3 + 2V e b — (— ) + —=
°r or °x 3z r ars dr M T 22% J
Rey dey 1 dp 3%, 1 dey 3%,
(] + cx—-—— T T I - L 5 + - + s
T ar Ox p Ox dr r dr ox

de c de
L s T X=a0 (20a)
dr T x

The construction of the eouatione shows that the sys—
tem (20) and (P0a) car be satisfied by the formula

cp = rf(x), ¢y = re(x), e, = h(x), p = p(x) (21)

r X

thus yielding for the three functions f, g, h the or—
dinary simulteneous differentilal equatlons

. . f sr a a= dh
f-s_gs-phg_:ud , 2fg+h""g‘=1’——£.-'—+2f=0 (22)
dx ax=® dx ax® ax
while the equation
ah
h.d_h=—.];di+u___d (23)
. dx p dx dx®

arising from the third equation of the svetem (20) defines
the pressure distribution p(x).

Since the fluid 1s to poscees no rotation at infinity,
but is to adhere to the roitaiizy wall for x = 0, the sys—
tem of the boundary conditions reads T

f(0) = 0 f(») = 0
g(0) = w glo) = 0
n(0) = 0
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The function h(x) has a finite limiting value for
x = ®, This means that there is a steady inflow against
the rotating wall ae is to be expected for reasons of
continuity. Owing to the adherence of the fluid, the ro—
tating wall acts like a kind of centrifugal fan. Next to
the wall the fluid is continuously carriled to the outside,
to be replaced by axial inflow.

For nondimensional representation

t=x/2 (24)

is introduced as 1lndependent variable and in place of
f, €, h tke functions £. £ E

f = f—. g = _S_' h = h (24a)
- w AT

so that (22) becomes

. _ df aff dg 4% an

£f° — g + h — = —, 2fg + h — — + 2f = 0 (22a)

= ETTE 23t e at

with the boundary conditions

0, g=1,h =0 for £ =0

b

£f=0, g=0 for { =o

8o that the equations are lndependent of all special data
of the problem. The similarity laws of the problem are
readily apparent. Since g(f) indicates the proportion—

ality factor of the rotative speed at distance x = ¢

from the wall to epeed of rotation w, 1t is clear that
with increasing velocity only one layer at the wall mani-—
feste perceptible rotational epeeds, which decrease with

increasing velocity and decreasing viescosity as =°

On the other hand, it followe from the last of equation
(24a) tkhat the axial irnflow velocity increamses af infinity

as +/ow,
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The equation gystem (22) can be solved by any numeri-
cal method or by series expansion. However, it 1is pre—
ferred to apply Pehlhausen's method described in reference
l, for a first approximation.

It is massumed that the function f and g at a
distance 8 from the wall are already very little differ—
ent from zero., From (21) it follows that the "boundary
layer thickness" in the present case is constant along
the wall, hence & 18 independent of §.

Integration of the first two equations of (22a) be—
tween §{ = 0 and x = 8, that 1s, ¢ = GV/% = $o, eives

to to
(fB__ B)d + hEd =df]go
[ [raegmlh
° Eo o ° (25)

dg dg 'lgo ‘
2f + _—
o o* J
Partial irterration of the second integral, while
bearing in minghthat according to the last equation of the

svetem (22a) Ei can be replaced by — 2f, finally affords

£o Eo ar Eo dg
s [ futem [l o famt-- 5] oo
¢ ¢ o
Put

I

= a %; (1 - %E)a (1 + 2 %;) - 1/2 (%;)a (1 -.gg)a
<12 (20 1) (- 1)

as approximete expreasions for f &and g, where a slg—
nifies & constant that is to be determined.

It was borne in mind that

(27)

1m
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f£f=0, g=1 for ¢t =0

af ag e
f = —=, w - f = 8
f at at or ¢

and also, as is readily seen from (22a), that

asg g
— =-1, —5 =0 for Et=0
at at

Numerical calculation of the integrals contalned in
(26) gives

te
/f’gaag = to [0.0301a® — 0,00326a + 0.00159] h
3 to
dJ/ £g°dt = to 0,2357 & (28)
. ‘o
/[’Efdg = to [0.0607a — 0.00587] )

which, entered in (26), gives two ordinary equations for
a and fo

0.0203a® — 0,00978a — 0,2309% = — ToF
; (29)
0.,2428a — 0.02328 = —g
2to
The numerical solution gives
a=1,02, fo = 2,58 (z0)

On the basis of these data the boundary layer thick—
ness 38 and the axial inflow veloclty co st infinity
can then be computed. Obviously
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to

8§ =¢to d/gf= 2,68 V/g: - Cp = w./pa;ag = 0,708,/ vo (31)

)
Aggume, for example, air as fluid with v = 0.14 square

centimeter per second and an rpm = 600 per minute, that 1is,

w = gg% = 62,8 per second; then the boundary lsyer thickness,

sccording to (31), would be
8§ = 0,122 cubic centimeter

and the axial inflow velocity

Cp @ — 7.6 coentimeters per second

The most important problem 18 the caleculation of the
frictionsal reslstance., Agsuming the wall bounded Py r = a,
the case is obviously that of a rotating disk with radius a,
However, the fact that the outer parte of the plane x = O
arc missing, cannot be without some effect on the motion of
the fluid, although it 1s to be presumed that this effect
remains insignificant, when the thickness of the boundary layer
relatlve to disk radius is very amall, ag 1is slmost clwayrsthe cane In practice.
On these assumptions, the moment of the shearing forces act—
ing on the disk 18 simply integrated from r = 0 to r = =a,
or what amounts to the same thing, the angular momentum leav—
ing in unit time with the fluid at the eylindrical surface
r = a 1ls computed and equated to the moment of the frictlonsal
forces. The latter process is preferred. The angular momen—~
tum of the fluld leaving at the cylindrical surface in unit
time 1is

8

D = 3"aapG/P°x°rdx = N (32)

or, by (21), (24), end (24a) :
(o]

M= 2na4pm5/a ul/ad/nggdﬁ (22a)
£o o
The integral J/1£§d§ has already been computed. IEnter—~
ol
ing 1ts value from (28) gives
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M= 0.9?’-8."';:»1?1/a w/8 (33)
or " i s )
¥ = 1.840% I 1 (22a)
2e /R

5

where U = aw 1s the circumferential velocity and R =

o S

v
is the Reynolds number., Bquatlon (32) must, of course, b
used twice, to obtain the resistance of the disk exposed to
flow from both sides.

FRICTIONAL RIS ISTANCE OF ROTATING DISK IN TURBULEKT FLUID MOTION

The relation governing (33): a frictional moment propor—
tional to the 3/2 power of the rotational speed at higher rota—
tional velocities 18 not borne out in practiece, On the con—
trary, a substantially quicker increase in frictlonal moment
is recorded with the rotational velocity. So the mesumption
is mede agaln as for the towed flat plate that a turbulent
boundary layer 1s invelved, and an ettempt is made to secure
an approximate value for the boundary layer thlckness and the
frictional resistance by applying the momentum equation.

For the rotating disk two equilibrium conditione are re~
quired, one in the radial, the other in the tangential direc—
tion.

Employing the same notation as in the precesedines section

and adding T and T, (f1g. €) for the frictional forces

rer unilt surface at the wall, the momentum guantitiee in the
radlial direction are:

() Evxcess of outgoing momentum quantity at the cylin—
drical surface (r + dr)8 (for an arc element of openins
angle 1) over to the incoming momentum quantity at area r§

8
4 & _
ir {rtfcr dx} dr
o
(b) The radial componpent of a respectively ingoing and

outgoing momentum quantity at the front surface (equal to
the centrifugal force of the rotating fluid volumeg
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8
_(ﬁj[Etagx dr -
;

These momentum quantities must be in equilibrium with
the shearing force T,.rdr; hence

) 6
i {r /cradx}-— pfctadx = = Tpr (34)
o

In tengential direction the Ailfference of the turning
moment of the momentum leaving at the cylindricsl surface
2r(r + dr)8 and entering at the surface 2nrd can be com—
puted and equated to the turning moment of the frictional
forces acting on the circular surface.

{ fc d.x = —Ty2nr? (35)

The formulas for the velocity distribution are-according
to the results of the section Turbulent Flow in Smooth Pipes.

SOMICHIEELIEOMIS

with due consideration that

for x =0 cp, = o, c, = ro; for x = 8 Cn = €y = 0
Now the integrale in (34) and (35) can be evaluated:

8 6 )
1 a 2 ) 33
j/ op dx = 0.207 c, 8|, epcgdx = 0.0681 nweys, J/ﬂ;t ix = 0,0278 ry 8

o] (o) O- (37)
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Further, put, in conformity with the assumptions on the
medsure of turbulent friction equation (141).

o ?/%_1/4 /e
Tp = 0.0225 P —O_B—TT [1 + ) ]s
T 7/4 vll‘ co\8 Ja/e
g = 0.0225 po(rw) Fﬁ [1 + (;—w- ]

by combining the velocity components at the wall and applying
the frictlion formula to the resultant,

With this equations (34) and (35) give the two differentisal
equations

/
_d; { 0.207 coa rB} -~ 0.0278 2was = ~ 0,0225 coar (_"__)1 /4 [1 + (Lu.>aj|3 g

dr Co8 Co
d . 1/4 e, a3/

L [ o.0881 rwegs | = 0.0225 r“wa(-‘l-s) [1 + (2) -l

ar L A ny aaiV] -

The equations are satisfied if the relationship between
boundary layer thickness and axial distance r is put as
Co = arw |

3/5J (8)

§ = Pr
and which gives two ordinary equations for a and B analo~
gous to the equation aystem (29). '

The equations
1/4

(1 . __>3/e

1/74 z/8
0.3133 of = O, 0925< ) (1 + a®) (z29)

0.7456 o B — 0.0278 p = ~ 0.0225 a.a(
; ’ apw
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given after division

- s m

1.0689 a3 — 0,0278 = O

The numerical solution gives

» 1/8
o = 0.162 and hence P = o.:xea(;) (40)

With these figures the boundary layer thickness becomes

P \1/5
8 = 0.462 r (T
row

The section modulus can be computed by the method given
in the preceding chapter or else based on equation (36):

6
v \1/5
M= 2naap /pcrctdx = 0.0364 aswap (—3—) (41)
. a“w
0

and the friction for both sides of the disk

P \1/5
M= 0,0728 a’w?p (——) (41e)
83w

In accord with the calculations on the towing resiscance
of plates all frietional resistances are then referred to the
velocity square and velocity head, respectively. With U =
circumferential speed of the disk, the moment 1is

) v 1/8
M= 0,146 ¥ LI (-— (42)
2g Ua

or the resistance coefficient ey o8 a function of the

Reynolds number of the disk R = %?
l .
ce = 0.146 — (43)

v




NACA TH No., 1092 30

Figure 7 showe c¢f plotted against the Reynolds numbers

R -~ both -on-a-logarithmic scale. The plot aleo contalns the
resistance coefficient

3.68
of = —— (44)

J

gecured from the calculation of the laminar dboundary layer
by equation (33a).

The experimental data were taken from a recently pub—
lished report on frictlonal resistance of smooth disks in water
by W. Schmidt (reference 18). The agreement is good. Of par—
ticular interest 1s the fact that the measurements at smaller
Reynolds numbers fall exactly in the transitional zone be—
tween laminar to turbulent flow.?!

NOTES ON ROUGHNESS

While for perfectly smooth pipes the Blasius resistance
law 1s apparently applicable over a wlde range of veloclties,
80 that 1t seems more than an interpolation formula, pipes
with rough sldes soon exhiblt after sxceeding the eritleal
point an approximately square relationship between gradient
and velocity. ¥For this etate the pressure gradient may be
put at

B
e\ V i ’
) 75 1 (45)

I v .
The experiments by Odell (Engineering, vol. 77, 1904,

P. 33 and by A. Stodola (steam turbinee, 4th ed., Berlin 1910,

pp. 120-~129) on the friction of rotating disks in air give 20

to 30 percent higher values and a more rapid increase in fric—

+
tion with the circumferential velocity. Odell shows ~ u® €
with € 4a small positive digit, Stodola wl*® ingtead of

w'*®). Odell's tests are certainly doubtful, because the
paper disks which he used, flutter and thus simulate greater
frictional resistance. In Stodola's report the higher ex—
ponent appears to correspond to the roughness of the disk,
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€
A 1s a function of the relative ropghneas E;__e denotes a

"Hﬁéﬁ11ty with the dimenelion of a length, which, to a certain

extent measures the average increase in the wall roughness.
The ratio of this quantity to the pipe dlameter is termed
the "relative roughness” (reference 4).

The square law for rough walls 1s plausible for the
reason that the frictlional resistmance 1s visualized as being
bullt up from the individual resistances of the wall pro—
tuberances, which singly obey the square law. The mechanism
of frictional resistance 1g in these cases obviously caused
by uniform shedding of vortices of well—defined intenslty
and dimensions, as is the case for flows on resistance bodies.

The flow resistance in perfectly smooth pipes might be
visualized such that in this instesnce vortices of dissimilar
magnitude are separated and float at random in the turdulent
flow, the frequency of the vortices of different intensity
and size belng controlled by some unknown, statistical law.

By this concept the frictional resistance in smooth
pipes can be regarded as a fictitious combination of resist—
ances that correspond to the individual kinds of vortices.
Assuming that a relationship exists between sige of vortices
and roughness, it may be said that the frictional resistance
in smooth pipes can be obtalned by superpeosition of the in—
dividual resistances observed on rough pipes and increasing
with the square of the velocity, if the individual squared
resistances are entered with correct welghts in the calcula-—
tion.

It 18 not without interest that conclusions can be drawn

€ )
about the form of the function K(E) on the basis of this

conception, and specifically, without knowing the law of
frequency and the welght function of the individual resist—
ances.

In particular, it can be shown that, if the Blasius law

for emooth pipes holds true, the funection A (_e_) muet have

a
al/7 €
the formula Ko (-i-) at least for small values of i

A, denoting a comnstant.
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On superposing the squared resistances bdy (46) on mssump—

~tlomr~of a welght funétion @(e¢), the resistance law for emooth

pipes reads?:

f}.(-}) ol€ )ac

. 2

h = ~ E‘?— (46)
/CP(E)dG

Next, 1t 1s assumed that the function p(e) for small
values of € compared to pipe dlameter ls dependent only on
the physical constants and the veloecity distridbution in the
immediate proximity of the wall elements. Specifically,
ple) 418 to be independent of' the pipe diameter. On the other
hand, the velocity distribution direectly adjacent to the wall
is according to earlier assumptions entirely contingent upon
the shearing stress at the particular wall element, There-
fore, put

CP(E) = q’(E. he O, To)

From the four quantities only one dimensionless com—
bination can be formed: namely,

=(%>I/a % : (47)
f() (/%5 )de
IN%D

Hence, write:

ole) = @ [% /r-:-;"-]

P-lv-

v
2g

1The extent of the integratlon to = 1ig m%rely a matter
of form, 9(e¢) decreases very substantially with increasing
€, and from a certain value of € on equals szero.
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which, with £ introduced as
[« -]

h =

variable gives

* l ”aJ;(-§> p(x)as

d 2¢g

c m
and with A = }‘o (:) glves

-]

/ o(=)as

o
n
o 03 . ._O/]B ?(z)ds o pm/a ] »? 1‘,mpm/a
5 e o— -— eotm——
a2 ° o Er 875 T 4 ag &r n/3
o(zlds
2
oo
" a
&/ s p(z)ds
K =2, = is a pure number.
/ o z)ax
Considering the relation
a®n Yhd
Yh —— = anT, 1 or To = —
4 41

exlsting between h and Ty

n/z . m/a
n (1 RS -

there 1s obtained

v? mpm/a
dl + m 2g

(a8)
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which, eolved for h . leaves.

h.(;)aim %35(%3%_5 (a9)

This law corresponds exactlv to the Blasius resistance
law for smooth pipes provided

anm
2+ m

= 1/4

or
n = 2/71

By introducing a specific formula for the welght functlon ¢ - eay,
after the tvpe of the law of error — the relationship between
the conetants of Blasius' law for smooth pipes and the con—
stants of the law of roughness can be ascertained. The writer

hopes te be able to return to the further development of
these arguments.

a/?
If, on the other hand, the law A = ko (&) is in-—-
ar’v
troduced in (45) the result with A ¢ = | 1is
1 o®
b=t =7 — :
d 2g

or -
0.5
v = ‘/?dgl'? ;(h‘) d0.64

According to the analogy between pipes and channels the
velocity in a channel with gradient J and hydraulic radius
P would be

v = constant g8 pO-o64

IHr. Prandtl states that he has arrived a2t the same
result by—'an entirely different process,
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Incidentally, according to R. Manning, the empirical

- -formula v = constant J©+8 POs668 gccording to Forchheimer,

the formula v = constant J0+5 P07 and according to

Hermanek, the formula v = constant J°2°5 P0¢® gives & good
representation of the test data in rough channels (reference

8,

p. 70).

Translation dy J. Vanler,
National Adviasory Committee
for Aeronautics.
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11.
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